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The 400 MHz '17 h'MR pectm of two deuterated derivatives of 4-t-butyZcycZoheptanone Sunary: 
(2 and 2) provided JHH values for the a-methylene protons on each side of the 
carbonyI group. The urterpretation of their magnitude shows cZea.rty that the carbonyl 
group is located at positia 1 of the twist-chair conformation while the t-buty2 group 
is located at position 4e. 

Compared to cyclohexanone and cyclooctanone, very little experimental information is 

available concerning the conformational properties of cycloheptanone and its derivatives 
l-4 . 

Recently' we reported 100 MHz 'H NMR results showing that the ring conformation of gem-dimethyl 

derivatives of cycloheptanone has the twist-chair geometry with the carbonyl group location at 

position 2(i.e. TC-2) (1). A similar conclusion was reached for cycloheptanone itself from the 

analysis of its vibrational spectra2. We now wish to report ‘tt NMR results for 2 and 2 at 400 MHz 

which reveal that the stable ring conformation of 4-t-butylcycloheptanone has the TC-1 form in 

which the carbonyl group is located at position 1 instead of at position 2. 

1 

Geminal coupling constants 

probels5 for the carbonyl group 

3 

(2JHH) for a-methylene groups were selected as the conformational 

environment and the t-butyl substituent was chosen because it is 

the one most likely to lead to a single conformation for a monosubstituted cycloheptanone. 

The 100 MHz deuterium decoupled 'H NMR spectra of CHF2Cl solutions of 2 and 2 showed all the 

expected signals compatible with their structure; it was also observed that the a-methylene 

protons gave singlets instead of AB patterns because of unfavorable Av/J ratios. On the other 

hand, the spectra recorded at 400 MHz with deuterium decoupling revealed well resolved AB pat- 

terns for each compound from which the following parameters were obtained: 2JHH = -15.5 f 0.1 Hz 

and Av = 22.5 Hz for 2; 2JHH = -15.6 f 0.1 Hz and Au = 30.7 Hz for 3. In addition, the upfield 

793 



794 

half of the AB pattern of 2 showed a long range coupling constant of 0.9 Hz. Surprisingly, the 

400 MHz spectrum of a CDCl3 solution of 2 gave a collapsed AB pattern (singlet) for the a-CH2 

signal. 

Reference parameters characterizing the protons at position 1 of the TC-2 conformation 

(i.e. 1-a-CH2) and the 3-o-CH2 protons are 2JHH = 15-16 Hz and 2JHH = 11-12 Hz respectivelyly6. 

(The absolute values of 2JHH are used here and in the following part of the text). 

If the 4-t-butylcycloheptanone ring adopted the TC-2 form of cycloheptanone as would be 

expected if the conformational preference of the carbonyl group determined the nature of the 

most stable conformation, then two forms with the t-butyl group in equatorial-like positions 

are possible for compound 2 (i.e. TC-2,5e (3) and TC-2,6e (2) where the first number indicate 

the location of the carbonyl group and the second that of the‘substituent). The expected 2JHH 

values for 2 and ,$ are then about 15.5 and 11.0 Hz respectively 196 . Consequently only the 

TC-2,5e form is compatible with the experimental value of 15.5 Hz. 

The possible forms for compound 3, obtained by an exchange of the isotope positions in 2, 

are TC'-2,5e (5) and TC'-2,6e (z). We now see that if TC-2,5e was the conformation of 4-t-butyl 

cycloheptanone, then the o-methylene protons of 3 would be located at position 3 as in 5 and 

should show a 
2 
JHH = 11.0 Hz instead of the 15.6 Hz observed. Clearly the TC'-2,5e (or TC-2,5e) 

conformation must be ruled out and similar arguments rule out TC-2,6e as the sole conformation. 

The existence of a rapidly equilibrating mixture of TC-2,5e and TC-2,6e (or more precisely 

its mirror image TC*-2,6e) forms is also incompatible with the results for 2 and 2. If this 

were the case, the average 2JHH values would depend on the proportion of each conformer. There- 

fore the high predominance of one form must be rejected from the previous arguments and an 
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essentially equivalent amount of each form in equilibriwm would lead to an averaged 2JHH of about 

13.5 f 1 Hz which again is inc~patible with our experimental values for 2 and 2. 

As alternative we can consider confo~ations 4 (C-l, 4e)and 2 (TC-l&e) each of which has 

both &X2 groups in very similar relationships with respect to the carbonyl group. Of these 

possible conformations, 8 is expected to be most unfavorable because the t-butyl group is eclipsed 

by an adjacent proton at position 5. On the other hand, conformation 2 allows the bulky 

substituent to take an equatorial-like position and furthermore allows the carbonyl group to 

adopt position 1 of the twist-chair form which was ca?culated7 to be only slightly more energetic 

than position 2. The dihedra'l angles (0) between each a-CH2 group of 2 should be essentially 

equal and were calculated' to be about -5" for which a *J HH Value of about 15-16 Hz is expected5 

in excellent agreement with our observations for 2 and 3.On the other hand, the dihedral angle es- 

timated for 8 from molecular models suggests that 'JHH ought to be less than 15 Hz. It therefore 

appears that & can be rejected and that 8 is the most stable conformation of 4-t-butylcyclohep_ 

tanonee However, S'Ia?~ mHmts Of TC-2,5e and/or TC-2,6e forms cannot be excluded by the present 

data. 

It is also pertinent to point out that the TC-1,4e form is the twist-chair form intermediate 

between TC-2,5e and TC*-2,6e on the pseudorotation itinerary "' for the interconversion of these 

two latter forms. Consequently, the TC-1,4e form would represent the minimum on the intercon- 

version energy profile. But because the local environment of the t-butyl group is similar in 

both TC-1,4e and TC-2,5e, it is difficult to explain or rationalize at this time the subtle 

conformational change detected in the cycloheptanone ring. 

Further work on compounds 2 and 2 is planned and NMR investigations of other cycloheptanone 

derivatives are in progress, 
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